Теория вероятностей
Теория вероятностей (разг. сокр. “тервер”) — это раздел математики, который занимается анализом случайных событий. С её помощью можно вычислить вероятность события — оно показывает насколько вероятно, что какое-то событие произойдёт. Это число всегда находится в интервале между 0 и 1, где 0 — означает невозможность, а 1 — оно точно произойдёт (достоверное событие).
Например: в мешке есть 6 шаров: 3 красных, 2 жёлтых и 1 синий. Какова вероятность вытащить красный?
Вероятность считается так: количество красных шаров поделить на общее количество шаров в мешке, т. е. 3/6 = 1/2.
Основные формулы теории вероятностей
Теоремы сложения и умножения вероятностей
Применение | Формула |
---|---|
Сложение противоположных событий | P(A) + P(A̅) = 1 |
Сложение несовместных событий | P(A + B) = P(A) + P(B) |
Сложение совместных событий | P(A + B) = P(A) + P(B) — P(AB) |
Умножение независимых событий | P(AB) = P(A) × P(B) |
Основные формулы вычисления
Название | Формула | Применение/Пояснение |
---|---|---|
Классическое определение вероятности |
|
Где m — количество элементарных событий, благоприятствующих событию А, и n — число всех элементарных событий данного испытания. |
Комбинаторика — Размещение |
|
Соединения, в которых каждое содержит m элементов (без повторений между ними), взятых из числа данных n элементов. |
Комбинаторика — Размещения с повторениями |
|
Число размещений с повторениями из n элементов по m элементов; соединения могут отличаться только порядком расположения элементов, но из m каких угодно и как угодно повторяющихся элементов. |
Комбинаторика — Сочетания |
, где 0 ≤ m ≤ n |
Соединения, в которых каждое содержит m элементов, взятых из числа данных n элементов; применяется когда порядок безразличен. |
Перестановки |
|
Соединения содержат все n элементов, отличие лишь в порядке их расположения. |
Виды событий
В теории вероятностей события бывают невозможными, случайными и достоверными.
Невозможное событие
Это то, которое уже известно, что в ходе испытания НЕ произойдёт, т. е. вероятность данного события равна нулю. Например: при бросании одной игральной кости (один раз), какова вероятность того, что выпадет 7 очков?
Случайное событие
Это событие может произойти или нет, обычно оно именно случайное. Например: при бросании игральной кости, какова вероятность того, что выпадет чётное число очков?
Достоверное событие
Это то, которое в ходе испытания обязательно произойдёт, т. е. вероятность данного события равна 1. Например: при бросании игральной кости, какова вероятность того, что она не останется в воздухе, а упадёт?
Совместные и несовместные события
Несовместные события — это когда появление одного исключает появление другого (в одном и том же испытании). Например: при бросании одной игральной кости выпадет одновременно и "2" и "3"?
Совместные события могут произойти одновременно. Например: два спортсмена плывут одновременно, два студента сдают экзамен.
Противоположные события
Это два несовместимых события, которые образуют полную группу событий (третьего не существует). Например:
- А — при подбрасывании монеты выпадет орёл, A̅ — при подбрасывании монеты выпадет решка;
- D — из колоды карт будет извлечена дама, D̅ — из колоды карт будет извлечена не дама.
Алгебра событий
Логическое ИЛИ означает, что нужно произвести операцию сложения (сумма событий). Т. е. считаем возможность или событие А, или событие В, или оба (одновременно).
Логическое И — операция умножения (произведение событий). Т. е. считаем возможность и событие А, и событие В.
Задачи
Пример 1
В классе 27 учеников. Из них:
17 изучали немецкий язык,
6 — английский,
2 — оба языка.
Найти вероятность того, что случайно выбранный ученик изучал хотя бы один язык.
Что мы знаем:
𝑃(N) = 17/27,
𝑃(A) = 6/27,
𝑃(N ∙ A) = 2/27.
Значит вместе это будет:
𝑃(N + A) = 𝑃(N) + 𝑃(A) − 𝑃(N ∙ A) = 17/27 + 6/27 − 2/27 = 21/27 = 7/9.
Пример 2
Лотерейные билеты пронумерованы от 1 до 100. Какова вероятность того, что в выбранном билете будет стоять число больше 40 или чётное число?
Что мы знаем:
P(>40) = 60/100 = 6/10 = 3/5
P(Ch) = ½ = 5/10
Логическое ИЛИ означает, что нам нужно произвести операцию сложения (т. е. сумма событий).
Нам понадобится формула сложения совместных событий P(A + B) = P(A) + P(B) — P(AB).
Для этого нам нужно узнать сколько будет P(>40 . Ch), для этого используем формулу P(AB) = P(A) . P(B).
P(>40 . Ch) = P(>40) . P(Ch) = ⅗ . ½ = 3/10
Теперь можем подставить всё в формулу P(A + B) = P(A) + P(B) — P(AB):
P(>40 + Ch) = P(>40) + P(Ch) — P(>40.Ch) = 6/10 + 5/10 — 3/10 = 8/10 = ⅘.
Пример 3
В финале международного турнира по стрельбе из лука участвовали 8 спортсменов: 3 американца, 1 англичанин, 1 немец, 1 француз и 2 русских. Какова вероятность того, что хотя бы один русский попадёт в тройку лучших, учитывая, что все спортсмены имеют равные условия для получения медали (золотой, серебряной и бронзовой).
Что мы знаем:
Когда в вопросе появляется "хотя бы один", можно "пойти от противного" — мы должны найти вероятность того, что этого не произойдёт (на пьедестале русских не будет), а затем вычесть это из 1.
P (никакой русский не выиграет золото) = 6/8 = 3/4
P (никакой русский не выиграет серебро) = 5/7 (убираем золотую медаль)
P (никакой русский не выиграет бронзу) = 4/6 = 2/3 (убираем золотую и серебряную медали)
P (на пьедестале не будет русских) = 3/4 x 5/7 x 2/3 = 30/84 = 5/14
P (хотя бы один русский на пьедестале) = 1 – 5/14 = 14/14 – 5/14 = 9/14.
Кто придумал теорию вероятностей
Основателями теории вероятностей являются два французских математика Блез Паскаль и Пьер Ферма. В 1654 г. французский писатель Антуан Гомбо (известный как Шевалье де Мере), интересовавшийся игрой и азартными играми, вызвал заинтересованность Паскаля насчёт популярной в то время игры в кости.
Кости бросались 24 раза, а вопрос стоял в том, стоит ли ставить деньги на выпадение хотя бы одной "двойной шестёрки". В то время считалось, что это было выгодно, но последующие расчёты показали прямо противоположное.
Узнайте про Метод Крамера, Интегралы, Корреляции, Математическое ожидание, Стандартное отклонение и Космологию.