Модуль Юнга

Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.

Это свойство любого материала, и оно зависит от температуры и оказываемого давления.

В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.

Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.

Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.

Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.

Примеры значений модуля Юнга (упругости) для:

  • с т а л и space E almost equal to 2 cross times 10 to the power of 11 space Н divided by м ²
  • р е з и н ы space E almost equal to 2 cross times 10 to the power of 6 space Н divided by м ² (т.е. для резины он в 5 раз меньше стали)

Таблица

Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи "гигапаскалей" ([ГПа]; 1 space г и г а п а с к а л ь equals 10 to the power of 9 space п а с к а л е й).

Материал Модуль Юнга E, [ГПа]
Алмаз 1220
Алюминий 69
Дерево 10
Кадмий 50
Латунь 97
Медь 110
Никель 207
Резина 0,9 (≈ 1 МПа, мегапаскаль)
Сталь 200
Титан 107

Единица измерения и формулы

Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).

Формулы

Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.

Закон Гука

Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.

Закон Гука (этот описывает явления в теле, в дифференциальной форме):

σ = E × ε формула Закон Гука Модуль Юнга

Где:

  • σ — механическое напряжение
  • E — модуль Юнга (модуль упругости)
  • ε — относительное удлинение

Закон Гука (этот описывает явления в теле)

begin mathsize 36px style F у п р space equals space k space cross times space capital delta l end style

Где:

  • Fупр — сила упругости
  • k × Δl — удлинение тела

begin mathsize 36px style F у п р space equals space E space cross times space S over l space cross times space capital delta l end style

Где:

  • Fупр — сила упругости
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина тела
  • Δl — удлинение тела

begin mathsize 36px style fraction numerator F у п р over denominator S end fraction space equals space E space cross times space fraction numerator capital delta l over denominator l end fraction end style

Где:

  • Fупр/S — механическое напряжение, обозначается как σ
  • Δl/l — относительное удлинение, обозначается как ε

Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.

Другие формулы вычисления модуля Юнга (модуля упругости)

begin mathsize 36px style E space equals space fraction numerator k l over denominator S end fraction end style

Где:

  • E — модуль Юнга (модуль упругости)
  • k — жёсткость тела
  • l — первоначальная длина стержня
  • S — площадь поперечного сечения

Либо можно выразить k (жёсткость тела):

begin mathsize 36px style space k space equals space E space cross times space S over l end style

Где:

  • k — жёсткость тела
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина стержня/тела

Пример решения задачи (через закон Гука):

Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.

Дано:

  • l = 2,5 м
  • S space equals space 2 comma 5 space м м ² space equals space 2 comma 5 cross times 10 to the power of negative 6 end exponent м squared
  • capital delta l equals 1 м м equals 10 to the power of negative 3 end exponent м
  • F = 50 H
  • E = ?

Будем искать через закон Гука (σ = E × ε).

Помним из закона Гука:

σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)

ε = Δl/l (а это относительное удлинение, обозначается как ε)

Подставляем в формулу (σ = E × ε):

begin mathsize 22px style fraction numerator F space over denominator S end fraction space equals space E space cross times space fraction numerator capital delta l over denominator l end fraction semicolon space в ы р а з и м space и з space э т о г о space Е end style

begin mathsize 22px style E space equals space fraction numerator F cross times l over denominator space S space cross times space capital delta l end fraction end style

begin mathsize 18px style E equals fraction numerator 50 H space cross times space 2 comma 5 м over denominator 2 comma 5 cross times 10 to the power of negative 6 end exponent м ² space cross times space 10 to the power of negative 3 end exponent м end fraction equals space 50 cross times 10 to the power of 9 П а space equals space 50 Г П а end style

Например, в нашей таблице такой модуль Юнга имеет кадмий.

Узнайте также про: