Математическое ожидание

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi
M(X) = ∑ xi × pi
Где:
М — математическое ожидание,
X — случайная величина,
p — вероятность появления случайной величины.

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет "1" — 1/6, "2" — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx
M(X) = ∫ f(x) × x.dx
Где:
М — математическое ожидание
f (x) — функция (которая будет предоставлена в условии задачи)
x — случайная величина
dx — элемент интегрирования

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

Кратко:

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Узнайте больше про Интегралы.

Основные свойства математического ожидания

  1. Математическое ожидание постоянной равно самой постоянной: М(c)=c.
  2. Математическое ожидание сложения/вычитания двух случайных величин равно сумме/вычитанию их математических ожиданий: пусть X и Y — две случайные величины, значит М (X ± Y) = М (X) ± М (Y).
  3. Если умножить случайную величину X на c, её среднее значение также умножается на эту константу (c): М (cX) = cМ (X).
  4. Если добавить или вычесть c из случайной величины X, то произойдёт та же операция (сложение или вычитание константы) с её средним значением: М (X ± c) = М (X) ± c.
  5. Если X и Y — две независимые случайные величины, значит: М(XY)=М(X)×М(Y).

Узнайте больше про Теорию вероятностей.